Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 123
1.
Biochimie ; 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38642825

Astrocytes are glial cells that play key roles in neuroinflammation, which is a common feature in diabetic encephalopathy and aging process. Metformin is an antidiabetic compound that shows neuroprotective properties, including in inflammatory models, but astroglial signaling pathways involved are still poorly known. Interferons α/ß are cytokines that participate in antiviral responses and the lack of their signaling increases susceptible to viral infections. Here, we investigated the effects of metformin on astrocytes from hypothalamus, a crucial brain region related to inflammatory processes. Astrocyte cultures were derived from interferon α/ß receptor knockout (IFNα/ßR-/-) and wild-type (WT) mice. Metformin did not change the expression of glial fibrillary acidic protein but caused an anti-inflammatory effect by decreasing pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1ß), as well as increasing gene expression of anti-inflammatory proteins interleukin-10 and Nrf2 (nuclear factor erythroid derived 2 like 2). However, nuclear factor κB p65 and cyclooxygenase 2 were downregulated in WT astrocytes and upregulated in IFNα/ßR-/- astrocytes. AMP-activated protein kinase (AMPK), a molecular target of metformin, was upregulated only in WT astrocytes, while sirtuin 1 increased in both mice models. The expression of inducible nitric oxide synthase was decreased in WT astrocytes and heme oxygenase 1 was increased in IFNα/ßR-/- astrocytes. Although loss of IFNα/ßR-mediated signaling affects some effects of metformin, our results support beneficial roles of this drug in hypothalamic astrocytes. Moreover, paradoxical response of metformin may involve AMPK. Thus, metformin can mediate glioprotection due its effects on age-related disorders in non-diabetic and diabetic encephalopathy individuals.

2.
Article En | MEDLINE | ID: mdl-38546817

Astrocytes play key roles regulating brain homeostasis and accumulating evidence has suggested that glia are the first cells that undergo functional changes with aging, which can lead to a decline in brain function. In this context, in vitro models are relevant tools for studying aged astrocytes and, here, we investigated functional and molecular changes in cultured astrocytes obtained from neonatal or adult animals submitted to an in vitro model of aging by an additional period of cultivation of cells after confluence. In vitro aging induced different metabolic effects regarding glucose and glutamate uptake, as well as glutamine synthetase activity, in astrocytes obtained from adult animals compared to those obtained from neonatal animals. In vitro aging also modulated glutathione-related antioxidant defenses and increased reactive oxygen species and cytokine release especially in astrocytes from adult animals. Interestingly, in vitro aged astrocytes from adult animals exposed to pro-oxidant, inflammatory, and antioxidant stimuli showed enhanced oxidative and inflammatory responses. Moreover, these functional changes were correlated with the expression of the senescence marker p21, cytoskeleton markers, glutamate transporters, inflammatory mediators, and signaling pathways such as nuclear factor κB (NFκB)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1). Alterations in these genes are remarkably associated with a potential neurotoxic astrocyte phenotype. Therefore, considering the experimental limitations due to the need for long-term maintenance of the animals for studying aging, astrocyte cultures obtained from adult animals further aged in vitro can provide an improved experimental model for understanding the mechanisms associated with aging-related astrocyte dysfunction.

3.
Nutr Neurosci ; : 1-13, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38386276

Caloric restriction (CR) has been proposed as a nutritional strategy to combat chronic diseases, including neurodegenerative diseases, as well as to delay aging. However, despite the benefits of CR, questions remain about its underlying mechanisms and cellular and molecular targets.Objective: As inflammatory processes are the basis or accompany chronic diseases and aging, we investigated the protective role of CR in the event of an acute inflammatory stimulus.Methods: Peripheral inflammatory and metabolic parameters were evaluated in Wistar rats following CR and/or acute lipopolysaccharide (LPS) administration, as well as glial changes (microglia and astrocytes), in two regions of the brain (hippocampus and hypothalamus) involved in the inflammatory response. We used a protocol of 30% CR, for 4 or 8 weeks. Serum and brain parameters were analyzed by biochemical or immunological assays.Results: Benefits of CR were observed during the inflammatory challenge, where the partial reduction of serum interleukin-6, mediated by CR, attenuated the systemic response. In the central nervous system (CNS), specifically in the hippocampus, CR attenuated the response to the LPS, as evaluated by tumor necrosis factor alpha (TNFα) levels. Furthermore, in the hippocampus, CR increased the glutathione (GSH) levels, resulting in a better antioxidant response.Discussion: This study contributes to the understanding of the effects of CR, particularly in the CNS, and expands knowledge about glial cells, emphasizing their importance in neuroprotection strategies.

4.
Aging Brain ; 5: 100104, 2024.
Article En | MEDLINE | ID: mdl-38225985

The aging process induces neurochemical alterations in different brain regions, including hypothalamus. This pivotal area of the central nervous system (CNS) is crucial for detection and integration of nutritional and hormonal signals from the periphery of the body to maintain metabolic homeostasis. Astrocytes support the CNS homeostasis, energy metabolism, and inflammatory response, as well as increasing evidence has highlighted a critical role of astrocytes in orchestrating hypothalamic functions and in gliocrine system. In this study, we aimed to investigate the age-dependent mRNA expression of adenosine receptors, the insulin-like growth factor 1 receptor (IGF1R), and the hypoxia-inducible factor 1α (HIF1α), in addition to the levels of IGF1 and HIF1α in hypothalamic astrocyte cultures derived from newborn, adult, and aged rats. Our results revealed age-dependent changes in adenosine receptors, as well as a decrease in IGF1R/IGF1 and HIF1α. Of note, adenosine receptors, IGF1, and HIF1α are affected by inflammatory, redox, and metabolic processes, which can remodel hypothalamic properties, as observed in aging brain, reinforcing the role of hypothalamic astrocytes as targets for understanding the onset and/or progression of age-related diseases.

5.
Neurochem Res ; 49(3): 732-743, 2024 Mar.
Article En | MEDLINE | ID: mdl-38063948

Astrocytes have key regulatory roles in central nervous system (CNS), integrating metabolic, inflammatory and synaptic responses. In this regard, type I interferon (IFN) receptor signaling in astrocytes can regulate synaptic plasticity. Simvastatin is a cholesterol-lowering drug that has shown anti-inflammatory properties, but its effects on astrocytes, a main source of cholesterol for neurons, remain to be elucidated. Herein, we investigated the effects of simvastatin in inflammatory and functional parameters of primary cortical and hypothalamic astrocyte cultures obtained from IFNα/ß receptor knockout (IFNα/ßR-/-) mice. Overall, simvastatin decreased extracellular levels of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß), which were related to a downregulation in gene expression in hypothalamic, but not in cortical astrocytes. Moreover, there was an increase in anti-inflammatory interleukin-10 (IL-10) in both structures. Effects of simvastatin in inflammatory signaling also involved a downregulation of cyclooxygenase 2 (COX-2) gene expression as well as an upregulation of nuclear factor κB subunit p65 (NFκB p65). The expression of cytoprotective genes sirtuin 1 (SIRT1) and nuclear factor erythroid derived 2 like 2 (Nrf2) was also increased by simvastatin. In addition, simvastatin increased glutamine synthetase (GS) activity and glutathione (GSH) levels only in cortical astrocytes. Our findings provide evidence that astrocytes from different regions are important cellular targets of simvastatin in the CNS, even in the absence of IFNα/ßR, which was showed by the modulation of cytokine production and release, as well as the expression of cytoprotective genes and functional parameters.


Astrocytes , Simvastatin , Mice , Animals , Astrocytes/metabolism , Simvastatin/pharmacology , Mice, Knockout , Tumor Necrosis Factor-alpha/metabolism , Interferon-alpha/metabolism , Interferon-alpha/pharmacology , Anti-Inflammatory Agents/pharmacology , Cholesterol/metabolism , Cells, Cultured
6.
Exp Biol Med (Maywood) ; 248(22): 2109-2119, 2023 Nov.
Article En | MEDLINE | ID: mdl-38058025

S100B is a 21-kDa protein that is produced and secreted by astrocytes and widely used as a marker of brain injury in clinical and experimental studies. The majority of these studies are based on measurements in blood serum, assuming an associated increase in cerebrospinal fluid and a rupture of the blood-brain barrier (BBB). Moreover, extracerebral sources of S100B are often underestimated. Herein, we will review these interpretations and discuss the routes by which S100B, produced by astrocytes, reaches the circulatory system. We discuss the concept of S100B as an alarmin and its dual activity as an inflammatory and neurotrophic molecule. Furthermore, we emphasize the lack of data supporting the idea that S100B acts as a marker of BBB rupture, and the need to include the glymphatic system in the interpretations of serum changes of S100B. The review is also dedicated to valorizing extracerebral sources of S100B, particularly adipocytes. Furthermore, S100B per se may have direct and indirect modulating roles in brain barriers: on the tight junctions that regulate paracellular transport; on the expression of its receptor, RAGE, which is involved in transcellular protein transport; and on aquaporin-4, a key protein in the glymphatic system that is responsible for the clearance of extracellular proteins from the central nervous system. We hope that the data on S100B, discussed here, will be useful and that it will translate into further health benefits in medical practice.


Brain Injuries , Humans , Brain Injuries/metabolism , Blood-Brain Barrier/metabolism , Astrocytes , S100 Calcium Binding Protein beta Subunit/metabolism
7.
J Neurovirol ; 29(5): 577-587, 2023 10.
Article En | MEDLINE | ID: mdl-37501054

Patients affected by COVID-19 present mostly with respiratory symptoms but acute neurological symptoms are also commonly observed. Furthermore, a considerable number of individuals develop persistent and often remitting symptoms months after infection, characterizing the condition called long-COVID. Since the pathophysiology of acute and persistent neurological manifestations is not fully established, we evaluated the expression of different genes in hippocampal slices of aged rats exposed to the serum of a post-COVID (sPC) individual and to the serum of patients infected by SARS-CoV-2 [Zeta (sZeta) and Gamma (sGamma) variants]. The expression of proteins related to inflammatory process, redox homeostasis, mitochondrial quality control and glial reactivity was determined. Our data show that the exposure to sPC, sZeta and sGamma differentially altered the mRNA levels of most inflammatory proteins and reduced those of antioxidant response markers in rat hippocampus. Furthermore, a decrease in the expression of mitochondrial biogenesis genes was induced by all serum samples, whereas a reduction in mitochondrial dynamics was only caused by sPC. Regarding the glial reactivity, S100B expression was modified by sPC and sZeta. These findings demonstrate that changes in the inflammatory response and a reduction of mitochondrial biogenesis and dynamics may contribute to the neurological damage observed in COVID-19 patients.


COVID-19 , Humans , Animals , Rats , COVID-19/genetics , Neuroinflammatory Diseases , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Homeostasis , Hippocampus
8.
Cells ; 12(12)2023 06 06.
Article En | MEDLINE | ID: mdl-37371027

Sulfite predominantly accumulates in the brain of patients with isolated sulfite oxidase (ISOD) and molybdenum cofactor (MoCD) deficiencies. Patients present with severe neurological symptoms and basal ganglia alterations, the pathophysiology of which is not fully established. Therapies are ineffective. To elucidate the pathomechanisms of ISOD and MoCD, we investigated the effects of intrastriatal administration of sulfite on myelin structure, neuroinflammation, and oxidative stress in rat striatum. Sulfite administration decreased FluoromyelinTM and myelin basic protein staining, suggesting myelin abnormalities. Sulfite also increased the staining of NG2, a protein marker of oligodendrocyte progenitor cells. In line with this, sulfite also reduced the viability of MO3.13 cells, which express oligodendroglial markers. Furthermore, sulfite altered the expression of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-10 (IL-10), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and heme oxygenase-1 (HO-1), indicating neuroinflammation and redox homeostasis disturbances. Iba1 staining, another marker of neuroinflammation, was also increased by sulfite. These data suggest that myelin changes and neuroinflammation induced by sulfite contribute to the pathophysiology of ISOD and MoCD. Notably, post-treatment with bezafibrate (BEZ), a pan-PPAR agonist, mitigated alterations in myelin markers and Iba1 staining, and IL-1ß, IL-6, iNOS and HO-1 expression in the striatum. MO3.13 cell viability decrease was further prevented. Moreover, pre-treatment with BEZ also attenuated some effects. These findings show the modulation of PPAR as a potential opportunity for therapeutic intervention in these disorders.


Bezafibrate , Peroxisome Proliferator-Activated Receptors , Rats , Animals , Bezafibrate/pharmacology , Peroxisome Proliferator-Activated Receptors/pharmacology , Myelin Sheath , Neuroinflammatory Diseases , Interleukin-6/pharmacology , Oxidative Stress , Sulfites/pharmacology
9.
In Vitro Cell Dev Biol Anim ; 59(5): 366-380, 2023 May.
Article En | MEDLINE | ID: mdl-37353697

Astrocytes play essential roles in the central nervous system (CNS), such as the regulation of glutamate metabolism, antioxidant defenses, and inflammatory/immune responses. Moreover, hypothalamic astrocytes seem to be crucial in the modulation of inflammatory processes, including those related to type I interferon signaling. In this regard, the polyphenol resveratrol has emerged as an important glioprotective molecule to regulate astrocyte functions. Therefore, this study aimed to investigate the immunomodulatory and protective effects of resveratrol in hypothalamic astrocyte cultures obtained from mouse depleted of type I interferon receptors (INF-α/ß-/-), a condition that can impair immune and inflammatory functions. Resveratrol upregulated glutamate transporter and glutamine synthetase gene expression, as well as modulated the release of wide range of cytokines and genes involved in the control of inflammatory response, besides the expression of adenosine receptors, which display immunomodulatory functions. Resveratrol also increased genes associated with redox balance, mitochondrial processes, and trophic factors signaling. The putative genes associated with glioprotective effects of resveratrol, including nuclear factor erythroid derived 2 like 2 (Nrf2), heme oxygenase 1 (HO-1), sirtuin 1 (SIRT1), and phosphoinositide 3-kinase (PI3K)/Akt, were further upregulated by resveratrol. Thus, our data show that resveratrol was able to modulate key genes associated with glial functionality and inflammatory response in astrocyte cultures derived from IFNα/ßR-/- mice. These data are in agreement with previous results, reinforcing its glioprotective effects even in hypothalamic astrocytes with altered inflammatory and immune signaling. Finally, this polyphenol can prepare astrocytes to better respond to injuries, including those associated with neuroimmunology defects.


Astrocytes , Receptors, Interferon , Rats , Animals , Mice , Resveratrol/pharmacology , Resveratrol/metabolism , Astrocytes/metabolism , Receptors, Interferon/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Rats, Wistar , Cells, Cultured
10.
Neuroreport ; 34(8): 419-425, 2023 05 17.
Article En | MEDLINE | ID: mdl-37096764

OBJECTIVES: The hypothalamus plays critical roles in maintaining brain homeostasis and increasing evidence has highlighted astrocytes orchestrating several of hypothalamic functions. However, it remains unclear how hypothalamic astrocytes participate in neurochemical mechanisms associated with aging process, as well as whether these cells can be a target for antiaging strategies. In this sense, the aim of this study is to evaluate the age-dependent effects of resveratrol, a well-characterized neuroprotective compound, in primary astrocyte cultures derived from the hypothalamus of newborn, adult, and aged rats. METHODS: Male Wistar rats (2, 90, 180, and 365 days old) were used in this study. Cultured astrocytes from different ages were treated with 10 and 100 µM resveratrol and cellular viability, metabolic activity, astrocyte morphology, release of glial cell line-derived neurotrophic factor (GDNF), transforming growth factor ß (TGF-ß), tumor necrosis factor α (TNF-α), interleukins (IL-1ß, IL-6, and IL-10), as well as the protein levels of Nrf2 and HO-1 were evaluated. RESULTS: In vitro astrocytes derived from neonatal, adults, and aged animals changed metabolic activity and the release of trophic factors (GDNF and TGF-ß), as well as the inflammatory mediators (TNF-α, IL-1ß, IL-6, and IL-10). Resveratrol prevented these alterations. In addition, resveratrol changed the immunocontent of Nrf2 and HO-1. The results indicated that the effects of resveratrol seem to have a dose- and age-associated glioprotective role. CONCLUSION: These findings demonstrate for the first time that resveratrol prevents the age-dependent underlying functional reprogramming of in vitro hypothalamic astrocytes, reinforcing its antiaging activity, and consequently, its glioprotective role.


Astrocytes , Interleukin-10 , Rats , Animals , Male , Resveratrol/pharmacology , Astrocytes/metabolism , Rats, Wistar , Interleukin-10/pharmacology , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Tumor Necrosis Factor-alpha/metabolism , NF-E2-Related Factor 2/metabolism , Interleukin-6/metabolism , Hypothalamus/metabolism , Transforming Growth Factor beta/metabolism , Cells, Cultured
11.
Glia ; 71(8): 1791-1803, 2023 08.
Article En | MEDLINE | ID: mdl-36866453

Zika virus (ZIKV) is a strongly neurotropic flavivirus whose infection has been associated with microcephaly in neonates. However, clinical and experimental evidence indicate that ZIKV also affects the adult nervous system. In this regard, in vitro and in vivo studies have shown the ability of ZIKV to infect glial cells. In the central nervous system (CNS), glial cells are represented by astrocytes, microglia, and oligodendrocytes. In contrast, the peripheral nervous system (PNS) constitutes a highly heterogeneous group of cells (Schwann cells, satellite glial cells, and enteric glial cells) spread through the body. These cells are critical in both physiological and pathological conditions; as such, ZIKV-induced glial dysfunctions can be associated with the development and progression of neurological complications, including those related to the adult and aging brain. This review will address the effects of ZIKV infection on CNS and PNS glial cells, focusing on cellular and molecular mechanisms, including changes in the inflammatory response, oxidative stress, mitochondrial dysfunction, Ca2+ and glutamate homeostasis, neural metabolism, and neuron-glia communication. Of note, preventive and therapeutic strategies that focus on glial cells may emerge to delay and/or prevent the development of ZIKV-induced neurodegeneration and its consequences.


Zika Virus Infection , Zika Virus , Humans , Zika Virus/physiology , Zika Virus Infection/complications , Zika Virus Infection/drug therapy , Zika Virus Infection/pathology , Neuroglia/metabolism , Central Nervous System/metabolism , Brain/metabolism
12.
Cell Mol Neurobiol ; 43(6): 2895-2907, 2023 Aug.
Article En | MEDLINE | ID: mdl-36862242

Isolated sulfite oxidase (ISOD) and molybdenum cofactor (MoCD) deficiencies are genetic diseases biochemically characterized by the toxic accumulation of sulfite in the tissues of patients, including the brain. Neurological dysfunction and brain abnormalities are commonly observed soon after birth, and some patients also have neuropathological alterations in the prenatal period (in utero). Thus, we investigated the effects of sulfite on redox and mitochondrial homeostasis, as well as signaling proteins in the cerebral cortex of rat pups. One-day-old Wistar rats received an intracerebroventricular administration of sulfite (0.5 µmol/g) or vehicle and were euthanized 30 min after injection. Sulfite administration decreased glutathione levels and glutathione S-transferase activity, and increased heme oxygenase-1 content in vivo in the cerebral cortex. Sulfite also reduced the activities of succinate dehydrogenase, creatine kinase, and respiratory chain complexes II and II-III. Furthermore, sulfite increased the cortical content of ERK1/2 and p38. These findings suggest that redox imbalance and bioenergetic impairment induced by sulfite in the brain are pathomechanisms that may contribute to the neuropathology of newborns with ISOD and MoCD. Sulfite disturbs antioxidant defenses, bioenergetics, and signaling pathways in the cerebral cortex of neonatal rats. CII: complex II; CII-III: complex II-III; CK: creatine kinase; GST: glutathione S-transferase; HO-1: heme oxygenase-1; SDH: succinate dehydrogenase; SO32-: sulfite.


Cerebral Cortex , Energy Metabolism , Molybdenum Cofactors , Sulfite Oxidase , Sulfites , Animals , Rats , Animals, Newborn , Oxidation-Reduction , Sulfites/adverse effects , Sulfite Oxidase/metabolism , Molybdenum Cofactors/metabolism , Rats, Wistar , Homeostasis , Mitochondria/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Antioxidants/metabolism
13.
Mol Cell Biochem ; 478(6): 1205-1216, 2023 Jun.
Article En | MEDLINE | ID: mdl-36272012

Aging is intrinsically related to metabolic changes and characterized by the accumulation of oxidative and inflammatory damage, as well as alterations in gene expression and activity of several signaling pathways, which in turn impact on homeostatic responses of the body. Hypothalamus is a brain region most related to these responses, and increasing evidence has highlighted a critical role of astrocytes in hypothalamic homeostatic functions, particularly during aging process. The purpose of this study was to investigate the in vitro effects of a chronic treatment with resveratrol (1 µM during 15 days, which was replaced once every 3 days), a recognized anti-inflammatory and antioxidant molecule, in primary hypothalamic astrocyte cultures obtained from aged rats (24 months old). We observed that aging process changes metabolic, oxidative, inflammatory, and senescence parameters, as well as glial markers, while long-term resveratrol treatment prevented these effects. In addition, resveratrol upregulated key signaling pathways associated with cellular homeostasis, including adenosine receptors, nuclear factor erythroid-derived 2-like 2 (Nrf2), heme oxygenase 1 (HO-1), sirtuin 1 (SIRT1), proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and phosphoinositide 3-kinase (PI3K). Our data corroborate the glioprotective effect of resveratrol in aged hypothalamic astrocytes, reinforcing the beneficial role of resveratrol in the aging process.


Astrocytes , Phosphatidylinositol 3-Kinases , Rats , Animals , Resveratrol/pharmacology , Astrocytes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cells, Cultured , Hypothalamus/metabolism , Sirtuin 1/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/pharmacology
14.
Exp Biol Med (Maywood) ; 248(22): 2120-2130, 2023 Nov.
Article En | MEDLINE | ID: mdl-38230521

Antipsychotics are commonly prescribed to treat several neuropsychiatric disorders, including schizophrenia, mania in bipolar disorder, autism spectrum disorder, delirium, and organic or secondary psychosis, for example, in dementias such as Alzheimer's disease. There is evidence that typical antipsychotics such as haloperidol are more effective in reducing positive symptoms than negative symptoms and/or cognitive deficits. In contrast, atypical antipsychotic agents have gained popularity over typical antipsychotics, due to fewer extrapyramidal side effects and their theoretical efficacy in controlling both positive and negative symptoms. Although these therapies focus on neuron-based therapeutic schemes, glial cells have been recognized as important regulators of the pathophysiology of neuropsychiatric disorders, as well as targets to improve the efficacy of these drugs. Glial cells (astrocytes, oligodendrocytes, and microglia) are critical for the central nervous system in both physiological and pathological conditions. Astrocytes are the most abundant glial cells and play important roles in brain homeostasis, regulating neurotransmitter systems and gliotransmission, since they express a wide variety of functional receptors for different neurotransmitters. In addition, converging lines of evidence indicate that psychiatric disorders are commonly associated with the triad neuroinflammation, oxidative stress, and excitotoxicity, and that glial cells may contribute to the gliotoxicity process. Conversely, glioprotective molecules attenuate glial damage by generating specific responses that can protect glial cells themselves and/or neurons, resulting in improved central nervous system (CNS) functioning. In this regard, resveratrol is well-recognized as a glioprotective molecule, including in clinical studies of schizophrenia and autism. This review will provide a summary of the dual role of antipsychotics on neurochemical parameters associated with glial functions and will highlight the potential activity of glioprotective molecules to improve the action of antipsychotics.


Antipsychotic Agents , Autism Spectrum Disorder , Schizophrenia , Humans , Antipsychotic Agents/adverse effects , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/drug therapy , Haloperidol/therapeutic use , Schizophrenia/drug therapy , Schizophrenia/chemically induced , Neuroglia
15.
J Neuroinflammation ; 19(1): 255, 2022 Oct 11.
Article En | MEDLINE | ID: mdl-36221097

Neuroinflammation is a common feature during the development of neurological disorders and neurodegenerative diseases, where glial cells, such as microglia and astrocytes, play key roles in the activation and maintenance of inflammatory responses in the central nervous system. Neuroinflammation is now known to involve a neurometabolic shift, in addition to an increase in energy consumption. We used two approaches (in vivo and ex vivo) to evaluate the effects of lipopolysaccharide (LPS)-induced neuroinflammation on neurometabolic reprogramming, and on the modulation of the glycolytic pathway during the neuroinflammatory response. For this, we investigated inflammatory cytokines and receptors in the rat hippocampus, as well as markers of glial reactivity. Mitochondrial respirometry and the glycolytic pathway were evaluated by multiple parameters, including enzymatic activity, gene expression and regulation by protein kinases. Metabolic (e.g., metformin, 3PO, oxamic acid, fluorocitrate) and inflammatory (e.g., minocycline, MCC950, arundic acid) inhibitors were used in ex vivo hippocampal slices. The induction of early inflammatory changes by LPS (both in vivo and ex vivo) enhanced glycolytic parameters, such as glucose uptake, PFK1 activity and lactate release. This increased glucose consumption was independent of the energy expenditure for glutamate uptake, which was in fact diverted for the maintenance of the immune response. Accordingly, inhibitors of the glycolytic pathway and Krebs cycle reverted neuroinflammation (reducing IL-1ß and S100B) and the changes in glycolytic parameters induced by LPS in acute hippocampal slices. Moreover, the inhibition of S100B, a protein predominantly synthesized and secreted by astrocytes, inhibition of microglia activation and abrogation of NLRP3 inflammasome assembly confirmed the role of neuroinflammation in the upregulation of glycolysis in the hippocampus. Our data indicate a neurometabolic glycolytic shift, induced by inflammatory activation, as well as a central and integrative role of astrocytes, and suggest that interference in the control of neurometabolism may be a promising strategy for downregulating neuroinflammation and consequently for diminishing negative neurological outcomes.


Lipopolysaccharides , Metformin , Animals , Cytokines/metabolism , Glucose/metabolism , Glutamates/metabolism , Hippocampus/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Lactates/adverse effects , Lactates/metabolism , Lipopolysaccharides/toxicity , Metformin/pharmacology , Microglia/metabolism , Minocycline/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroinflammatory Diseases , Oxamic Acid/adverse effects , Oxamic Acid/metabolism , Protein Kinases/metabolism , Rats
16.
Neurotox Res ; 40(5): 1337-1347, 2022 Oct.
Article En | MEDLINE | ID: mdl-36057040

Methylglyoxal (MG) is a reactive dicarbonyl compound formed mostly via the glycolytic pathway. Elevated blood glucose levels can cause MG accumulation in plasma and cerebrospinal fluid in patients with diabetes mellitus and Alzheimer's disease. Under these disease conditions, the high reactivity of MG leads to modification of proteins and other biomolecules, generating advanced glycation end products (AGEs), which are considered mediators in neurodegenerative diseases. We investigated the integrity of the blood-brain barrier (BBB) and astrocyte response in the hippocampus to acute insult induced by MG when it was intracerebroventricularly administered to rats. Seventy-two hours later, BBB integrity was lost, as assessed by the entry of Evans dye into the brain tissue and albumin in the cerebrospinal fluid, and a decrease in aquaporin-4 and connexin-43 in the hippocampal tissue. MG did not induce changes in the hippocampal contents of RAGE in this short interval, but decreased the expression of S100B, an astrocyte-secreted protein that binds RAGE. The expression of two important transcription factors of the antioxidant response, NF-κB and Nrf2, was unchanged. However, hemeoxigenase-1 was upregulated in the MG-treated group. These data corroborate the idea that hippocampal cells are targets of MG toxicity and that BBB dysfunction and specific glial alterations induced by this compound may contribute to the behavioral and cognitive alterations observed in these animals.


Aquaporins , Pyruvaldehyde , Albumins/metabolism , Animals , Antioxidants/metabolism , Aquaporins/metabolism , Blood Glucose/metabolism , Blood-Brain Barrier/metabolism , Connexins/metabolism , Glycation End Products, Advanced/toxicity , Hippocampus/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Pyruvaldehyde/pharmacology , Rats , Receptor for Advanced Glycation End Products/metabolism
17.
Amino Acids ; 54(11): 1505-1517, 2022 Nov.
Article En | MEDLINE | ID: mdl-35927507

Methylmalonic acidemia is a neurometabolic disorder biochemically characterized by the accumulation of methylmalonic acid (MMA) in different tissues, including the central nervous system (CNS). In this sense, it has been shown that high levels of this organic acid have a key role in the progressive neurological deterioration in patients. Astroglial cells actively participate in a wide range of CNS functions, such as antioxidant defenses and inflammatory response. Considering the role of these cells to maintain brain homeostasis, in the present study, we investigated the effects of MMA on glial parameters, focusing on redox homeostasis and inflammatory process, as well as putative mediators of these events in C6 astroglial cells. MMA decreased cell viability, glutathione levels, and antioxidant enzyme activities, increased inflammatory response, and changed the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear factor kappa B (NFκB), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and adenosine receptors, suggesting that these transcriptional factors and proteins may underlie the glial responses induced by MMA. Moreover, we also demonstrated the protective roles of melatonin and resveratrol against MMA-induced inflammation and decrease in glutathione levels. In summary, our findings support the hypothesis that astroglial changes are associated with pathogenesis of methylmalonic acidemia. In addition, we showed that these cells might be potential targets for preventive/therapeutic strategies by using molecules, such as melatonin and resveratrol, which mediated glioprotection in this inborn error of metabolism.


Melatonin , Methylmalonic Acid , Animals , Rats , Humans , Resveratrol/pharmacology , Astrocytes , Melatonin/pharmacology , Antioxidants/pharmacology , Rats, Wistar , Oxidation-Reduction , Glutathione/pharmacology , Homeostasis
18.
Front Cell Neurosci ; 16: 905218, 2022.
Article En | MEDLINE | ID: mdl-35966209

We are living in a terrifying pandemic caused by Sars-CoV-2, in which patients with diabetes mellitus have, from the beginning, been identified as having a high risk of hospitalization and mortality. This viral disease is not limited to the respiratory system, but also affects, among other organs, the central nervous system. Furthermore, we already know that individuals with diabetes mellitus exhibit signs of astrocyte dysfunction and are more likely to develop cognitive deficits and even dementia. It is now being realized that COVID-19 incurs long-term effects and that those infected can develop several neurological and psychiatric manifestations. As this virus seriously compromises cell metabolism by triggering several mechanisms leading to the unfolded protein response (UPR), which involves endoplasmic reticulum Ca2+ depletion, we review here the basis involved in this response that are intimately associated with the development of neurodegenerative diseases. The discussion aims to highlight two aspects-the role of calcium-binding proteins and the role of astrocytes, glial cells that integrate energy metabolism with neurotransmission and with neuroinflammation. Among the proteins discussed are calpain, calcineurin, and sorcin. These proteins are emphasized as markers of the UPR and are potential therapeutic targets. Finally, we discuss the role of drugs widely prescribed to patients with diabetes mellitus, such as statins, metformin, and calcium channel blockers. The review assesses potential neuroprotection mechanisms, focusing on the UPR and the restoration of reticular Ca2+ homeostasis, based on both clinical and experimental data.

19.
Mol Neurobiol ; 59(7): 4436-4452, 2022 Jul.
Article En | MEDLINE | ID: mdl-35570263

CTK 01512-2 toxin is a recombinant peptide of the Phα1ß version derived from the venom of the Phoneutria nigriventer spider. It acts as an N-type voltage-gated calcium channel (VGCC) blocker and shows a prolonged effect on preventing and reducing nociception. Herein, CTK 01512-2 was tested on two models of persistent pain, the chronic post-ischemia pain (CPIP) and the paclitaxel-induced peripheral neuropathy, to evaluate its systemic, intrathecal, and intracerebroventricular effects on mechanical hypersensitivity and thermal allodynia. Glial cell viability was also investigated using the MTT test. The results showed that CTK 01512-2 intrathecal and systemic treatments reduced the mechanical hypersensitivity induced by CPIP, mainly between 1-4 h after its administration. Additionally, intrathecal treatment reduced the CPIP-induced thermal allodynia. In its turn, the intracerebroventricular treatment showed mechanical antihyperalgesic and thermal antiallodynic effects in the paclitaxel-induced peripheral neuropathy. These data reinforce the therapeutic potential of CTK 01512-2 to treat persistent pain conditions and offer a perspective to use the systemic route. Moreover, CTK 01512-2 increased the glial cell viability in the MTT reduction assay, and it may indicate a new approach to managing chronic pain. The results found in this study help to pave new perspectives of pain relief treatments to patients affected by chronic pain.


Chronic Pain , Spider Venoms , omega-Conotoxins , Animals , Calcium Channel Blockers/pharmacology , Chronic Pain/drug therapy , Disease Models, Animal , Humans , Hyperalgesia/drug therapy , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Spider Venoms/pharmacology , Spider Venoms/therapeutic use , omega-Conotoxins/pharmacology , omega-Conotoxins/therapeutic use
20.
Neurotox Res ; 40(2): 530-541, 2022 Apr.
Article En | MEDLINE | ID: mdl-35320508

Astroglial cells play important roles in maintaining central nervous system (CNS) homeostasis. The neurotoxin ß-N-methylamino-L-alanine (BMAA) has usually been associated with neurodegeneration due to its toxic effects on neurons. However, little is known about the effects of BMAA on astroglial cells. Resveratrol, a natural polyphenol, represents a potential protective strategy against brain injuries. In the present study, we sought to investigate BMAA-induced astroglial dysfunctions and the glioprotective roles of resveratrol. BMAA did not impair astroglial cellular viability, but increased glutamate uptake, glutamate metabolism into glutamine, and reactive oxygen species production, while decreased glutathione (GSH) and superoxide dismutase (SOD)-based antioxidant defenses and triggers an inflammatory response. In contrast, resveratrol was able to prevent most of these BMAA-induced functional changes in astroglial cells. Moreover, both BMAA and resveratrol modulated the gene expression of molecular pathways associated with glutamate metabolism, redox homeostasis, and inflammatory response, which characterize their roles on astroglial functions. In this regard, BMAA downregulated adenosine receptors, peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), phosphoinositide-3-kinase (PI3K), and Akt, while resveratrol prevented these effects and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Our study, for the first time, demonstrates that BMAA directly impacts key astroglial functions, contributing to elucidating the cellular and molecular mechanisms of this toxin in the CNS. In addition, we reinforce the glioprotective effects of resveratrol against BMAA-induced astroglial dysfunctions.


Astrocytes , Glutamic Acid , Antioxidants/metabolism , Antioxidants/pharmacology , Glutamic Acid/metabolism , Resveratrol/pharmacology , Signal Transduction
...